资源类型

期刊论文 359

年份

2024 2

2023 27

2022 22

2021 25

2020 22

2019 22

2018 21

2017 14

2016 11

2015 11

2014 14

2013 17

2012 14

2011 13

2010 16

2009 20

2008 31

2007 23

2006 5

2005 3

展开 ︾

关键词

电动汽车 3

动力电池 2

城市河流 2

微反应器 2

数值模拟 2

ADV 1

CCUS 1

CFD 1

CO2利用 1

Cas12a 1

Chebyshev多项式 1

Colebrook隐式方程 1

HY-2 卫星 1

Matlab 1

PIV 1

Preissmann格式 1

S 特性 1

SIMPLEC算法 1

ZEBRA 电池 1

展开 ︾

检索范围:

排序: 展示方式:

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium redox flowbattery

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1221-1230 doi: 10.1007/s11705-023-2298-8

摘要: The vanadium redox flow battery with a safe and capacity-controllable large-scale energy storage system offers a new method for the sustainability. In this case, acetic acid, methane sulfonic acid, sulfonic acid, amino methane sulfonic acid, and taurine are used to overcome the low electrolyte energy density and stability limitations, as well as to investigate the effects of various organic functional groups on the vanadium redox flow battery. When compared to the pristine electrolyte (0.22 Ah, 5.0 Wh·L–1, 85.0%), the results show that taurine has the advantage of maintaining vanadium ion concentrations, discharge capacity (1.43 Ah), energy density (33.9 Wh·L–1), and energy efficiency (90.5%) even after several cycles. The acetic acid electrolyte is more conducive to the low-temperature stability of the V(II) electrolyte (177 h at −25 °C) than pristine (82 h at −2 °C). The –SO3H group, specifically the coaction of the –NH2 and –SO3H groups, improves electrolyte stability. The –NH2 and –COOH additive groups improved conductivity and electrochemical activity.

关键词: vanadium redox flow battery     functional groups     organic additives     energy density     stability    

Pressure drop analysis on the positive half-cell of a cerium redox flow battery using computational fluid

Fernando F. Rivera, Berenice Miranda-Alcántara, Germán Orozco, Carlos Ponce de León, Luis F. Arenas

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 399-409 doi: 10.1007/s11705-020-1934-9

摘要: Description of electrolyte fluid dynamics in the electrode compartments by mathematical models can be a powerful tool in the development of redox flow batteries (RFBs) and other electrochemical reactors. In order to determine their predictive capability, turbulent Reynolds-averaged Navier-Stokes (RANS) and free flow plus porous media (Brinkman) models were applied to compute local fluid velocities taking place in a rectangular channel electrochemical flow cell used as the positive half-cell of a cerium-based RFB for laboratory studies. Two different platinized titanium electrodes were considered, a plate plus a turbulence promoter and an expanded metal mesh. Calculated pressure drop was validated against experimental data obtained with typical cerium electrolytes. It was found that the pressure drop values were better described by the RANS approach, whereas the validity of Brinkman equations was strongly dependent on porosity and permeability values of the porous media.

关键词: CFD simulation     porous media     porous electrode     pressure drop     redox flow battery    

Redox flow batteries—Concepts and chemistries for cost-effective energy storage

Matthäa Verena HOLLAND-CUNZ, Faye CORDING, Jochen FRIEDL, Ulrich STIMMING

《能源前沿(英文)》 2018年 第12卷 第2期   页码 198-224 doi: 10.1007/s11708-018-0552-4

摘要: Electrochemical energy storage is one of the few options to store the energy from intermittent renewable energy sources like wind and solar. Redox flow batteries (RFBs) are such an energy storage system, which has favorable features over other battery technologies, e.g. solid state batteries, due to their inherent safety and the independent scaling of energy and power content. However, because of their low energy-density, low power-density, and the cost of components such as redox species and membranes, commercialised RFB systems like the all-vanadium chemistry cannot make full use of the inherent advantages over other systems. In principle, there are three pathways to improve RFBs and to make them viable for large scale application: First, to employ electrolytes with higher energy density. This goal can be achieved by increasing the concentration of redox species, employing redox species that store more than one electron or by increasing the cell voltage. Second, to enhance the power output of the battery cells by using high kinetic redox species, increasing the cell voltage, implementing novel cell designs or membranes with lower resistance. The first two means reduce the electrode surface area needed to supply a certain power output, thereby bringing down costs for expensive components such as membranes. Third, to reduce the costs of single or multiple components such as redox species or membranes. To achieve these objectives it is necessary to develop new battery chemistries and cell configurations. In this review, a comparison of promising cell chemistries is focused on, be they all-liquid, slurries or hybrids combining liquid, gas and solid phases. The aim is to elucidate which redox-system is most favorable in terms of energy-density, power-density and capital cost. Besides, the choice of solvent and the selection of an inorganic or organic redox couples with the entailing consequences are discussed.

关键词: electrochemical energy storage     redox flow battery     vanadium    

End-of-life batteries management and material flow analysis in South Korea

Hyunhee Kim, Yong-Chul Jang, Yeonjung Hwang, Youngjae Ko, Hyunmyeong Yun

《环境科学与工程前沿(英文)》 2018年 第12卷 第3期 doi: 10.1007/s11783-018-1019-x

摘要: Consumers increasingly have worn-out batteries as electrical and electronic equipment with new technical developments are introduced into the market and quickly replace older models. As a result, large amounts of end-of-life (EOL) or waste batteries are generated. Such batteries may contain a variety of materials that includes valuable resources as well as toxic elements. Thus, the proper recycling and management of batteries is very important from the perspective of resource conservation and environmental effect. The collection and recycling of EOL batteries is relatively low in South Korea compared to other countries, although an extended producer responsibility (EPR) policy was adopted for battery recycling in 2003. In this study, the management and material flow of EOL batteries is presented to determine potential problems and quantitative flow, based on literature review, site visits to battery recycling facilities, and interviews with experts in the Korea Battery Recycling Association (KBRA), manufacturers, and regulators in government. The results show that approximately 558 tons of manganese-alkaline batteries, the largest fraction among recycling target items, was disposed in landfills or incinerators in 2015, while approximately 2,000 tons of batteries were recovered at a recycling facility by simple sorting and crushing processes. By raising environmental awareness, more diverse and effective collection systems could be established for consumers to easily dispose of EOL batteries in many places. Producers, retailers and distributors in South Korea should also play an important role in the collection of EOL batteries from consumers. Lithium-ion batteries from many electronic devices must be included in the EPR system for resource recovery.

关键词: End-of-life battery     Recycling     Material flow analysis (MFA)     Extended producer responsibility (EPR)     Resource recovery    

用于固定式大规模储能的液流电池

尹彦斌, 李先锋

《工程(英文)》 2023年 第21卷 第2期   页码 42-44 doi: 10.1016/j.eng.2022.10.007

Cumulant-based correlated probabilistic load flow considering photovoltaic generation and electric vehicle

Nitesh Ganesh BHAT, B. Rajanarayan PRUSTY, Debashisha JENA

《能源前沿(英文)》 2017年 第11卷 第2期   页码 184-196 doi: 10.1007/s11708-017-0465-7

摘要: This paper applies a cumulant-based analytical method for probabilistic load flow (PLF) assessment in transmission and distribution systems. The uncertainties pertaining to photovoltaic generations and aggregate bus load powers are probabilistically modeled in the case of transmission systems. In the case of distribution systems, the uncertainties pertaining to plug-in hybrid electric vehicle and battery electric vehicle charging demands in residential community as well as charging stations are probabilistically modeled. The probability distributions of the result variables (bus voltages and branch power flows) pertaining to these inputs are accurately established. The multiple input correlation cases are incorporated. Simultaneously, the performance of the proposed method is demonstrated on a modified Ward-Hale 6-bus system and an IEEE 14-bus transmission system as well as on a modified IEEE 69-bus radial and an IEEE 33-bus mesh distribution system. The results of the proposed method are compared with that of Monte-Carlo simulation.

关键词: battery electric vehicle     extended cumulant method     photovoltaic generation     plug-in hybrid electric vehicle     probabilistic load flow    

A brief review on key technologies in the battery management system of electric vehicles

Kailong LIU, Kang LI, Qiao PENG, Cheng ZHANG

《机械工程前沿(英文)》 2019年 第14卷 第1期   页码 47-64 doi: 10.1007/s11465-018-0516-8

摘要: Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.

关键词: battery management system     battery modelling     battery state estimation     battery charging    

β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI

《能源前沿(英文)》 2017年 第11卷 第3期   页码 401-409 doi: 10.1007/s11708-017-0496-0

摘要: As part of an effort to build a prototype flow battery system using a nano-suspension containing β-Ni(OH) nanoparticles as the cathode material, nano-sized β-Ni(OH) particles with well-controlled particle size and morphology were synthesized via the one-step precipitation of a NiCl precursor. The composition and morphology of the nanoparticles were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The XRD patterns confirmed that β-Ni(OH) was successfully synthesized, while SEM results showed that the particle sizes range from 70 to 150 nm. To ensure that Ni(OH) could be employed in the nano-suspension flow battery, the electrochemical performance of the synthesized β-Ni(OH) was initially tested in pouch cells through charge/discharge cycling. The phase transformations occurring during charge/discharge were investigated using X-ray absorption spectroscopy to obtain the shift in the oxidation state of Ni (X-ray adsorption near edge structure, XANES) and the distances between Ni and surrounding atoms in charged and discharged states (extended X-ray absorption fine structure, EXAFS). XANES results indicated that the electrode in the discharged state was a mixture of phases because the edge position did not shift back completely. XAFS results further proved that the discharge capacity was provided by β-NiOOH and the ratio between β-Ni(OH) and g-NiOOH in the electrode in the discharged state was 71:29. Preliminary nano-suspension tests in a lab-scale cell were conducted to understand the behavior of the nano-suspension during charge/discharge cycling and to optimize the operating conditions.

关键词: nano-suspension flow battery     β-Ni(OH)2     scanning electronic microscopy (SEM)     X-ray diffraction (XRD)     X-ray adsorption near edge structure (XANES)     extended X-ray absorption fine structure (EXAFS)    

Mapping the trends and prospects of battery cathode materials based on patent landscape

《能源前沿(英文)》   页码 822-832 doi: 10.1007/s11708-023-0900-x

摘要: Advancing portable electronics and electric vehicles is heavily dependent on the cutting-edge lithium-ion (Li-ion) battery technology, which is closely linked to the properties of cathode materials. Identifying trends and prospects of cathode materials based on patent analysis is considered a kernel to optimize and refine battery related markets. In this paper, a patent analysis is performed on 6 popular cathode materials by comprehensively considering performance comparison, development trend, annual installed capacity, technology life cycle, and distribution among regions and patent assignees. In the technology life cycle, the cathode materials majorly used in electric vehicle have entered maturity stage, while the lithium cobalt oxide (LCO) cathode that is widely used in portable electronics is still in the growth stage. In global patent distributions, China holds more than 50% of total patents. In the top 10 patent assignees of 6 cathode materials, 2 institutes are from China with the rest being Japan (6) and Republic of Korea (2), indicating that the technology of cathode materials in China is relatively scattered while cathode research is highly concentrated in Japan and Republic of Korea. Moreover, the patent distribution has to consider practical issues as well as the impacts of core patents. For example, the high cost discourages the intention of applying international patents. This paper is expected to stimulate battery research, understand technical layout of various countries, and probably forecast innovative technology breakthroughs.

关键词: patent analysis     cathode     batteries     technology life cycle    

Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle

P. PADMAGIRISAN, V. SANKARANARAYANAN

《能源前沿(英文)》 2019年 第13卷 第2期   页码 296-306 doi: 10.1007/s11708-018-0605-8

摘要: This paper proposes a powertrain controller for a solar photovoltaic battery powered hybrid electric vehicle (HEV). The main objective of the proposed controller is to ensure better battery management, load regulation, and maximum power extraction whenever possible from the photovoltaic panels. The powertrain controller consists of two levels of controllers named lower level controllers and a high-level control algorithm. The lower level controllers are designed to perform individual tasks such as maximum power point tracking, battery charging, and load regulation. The perturb and observe based maximum power point tracking algorithm is used for extracting maximum power from solar photovoltaic panels while the battery charging controller is designed using a PI controller. A high-level control algorithm is then designed to switch between the lower level controllers based on different operating conditions such as high state of charge, low state of charge, maximum battery current, and heavy load by respecting the constraints formulated. The developed algorithm is evaluated using theoretical simulation and experimental studies. The simulation and experimental results are presented to validate the proposed technique.

关键词: battery management system     hybrid electric vehicles (HEVs)     maximum power point tracking (MPPT)     solar photovoltaic    

Performance of iron-air battery with iron nanoparticle-encapsulated C–N composite electrode

《能源前沿(英文)》 doi: 10.1007/s11708-023-0913-5

摘要: Highly efficient and stable iron electrodes are of great significant to the development of iron-air battery (IAB). In this paper, iron nanoparticle-encapsulated C–N composite (NanoFe@CN) was synthesized by pyrolysis using polyaniline as the C–N source. Electrochemical performance of the NanoFe@CN in different electrolytes (alkaline, neutral, and quasi-neutral) was investigated via cyclic voltammetry (CV). The IAB was assembled with NanoFe@CN as the anode and IrO2 + Pt/C as the cathode. The effects of different discharging/charging current densities and electrolytes on the battery performance were also studied. Neutral K2SO4 electrolyte can effectively suppress the passivation of iron electrode, and the battery showed a good cycling stability during 180 charging/discharging cycles. Compared to the pure nano-iron (NanoFe) battery, the NanoFe@CN battery has a more stable cycling stability either in KOH or NH4Cl + KCl electrolyte.

关键词: energy storage and conversion     metallic composites     nanocomposites     iron-air battery     iron anode    

储能钠电池技术发展的挑战与思考

胡英瑛,吴相伟,温兆银,侯明,衣宝廉

《中国工程科学》 2021年 第23卷 第5期   页码 94-102 doi: 10.15302/J-SSCAE-2021.05.013

摘要:

储能安全是国家能源安全的重要方面,是国民经济发展的重要支撑,对国家安全、可持续发展以及社会稳定具有重要的影响。钠电池技术兼具高功率密度、高能量密度、低成本以及高安全性等优势,成为一类重要的大规模储能技术。本文重点介绍了包括钠硫电池和钠– 金属氯化物电池等在内的典型钠电池体系的技术优势和应用场景,并通过分析钠电池技术在国内外的发展与应用现状提出了我国钠电池技术可能的发展方向并给出了相应的建议,包括支持储能钠电池相关材料科学的研究和工程化技术攻关、推动储能钠电池相关上下游产业的聚集发展、建立健全储能钠电池的相关标准和性能评价平台等措施,以提升我国储能钠电池技术的研发水平和技术成熟度,为我国的能源安全建设带来新的可靠选择。

关键词: 电化学储能     钠电池     钠硫电池     钠– 金属氯化物电池     ZEBRA 电池    

电动自行车用锌空气动力电池

朱梅,徐献芝,杨基明

《中国工程科学》 2006年 第8卷 第11期   页码 99-102

摘要:

介绍了可用于替代铅酸电池的一种锌空气动力电池,在技术上实现了大容量,小体积,结构合理。主要的突破体现在空气电极和锌电极的特殊设计,以及单电池的合理组装。比较了该动力电池与同类产品的技术指标。

关键词: 电动自行车     铅酸电池     锌空气电池     动力电池     容量    

Modeling and optimization of an enhanced battery thermal management system in electric vehicles

Mao LI, Yuanzhi LIU, Xiaobang WANG, Jie ZHANG

《机械工程前沿(英文)》 2019年 第14卷 第1期   页码 65-75 doi: 10.1007/s11465-018-0520-z

摘要: This paper models and optimizes an air-based battery thermal management system (BTMS) in a battery module with 36 battery lithium-ion cells. A design of experiments is performed to study the effects of three key parameters (i.e., mass flow rate of cooling air, heat flux from the battery cell to the cooling air, and passage spacing size) on the battery thermal performance. Three metrics are used to evaluate the BTMS thermal performance, including (i) the maximum temperature in the battery module, (ii) the temperature uniformity in the battery module, and (iii) the pressure drop. It is found that (i) increasing the total mass flow rate may result in a more non-uniform distribution of the passage mass flow rate among passages, and (ii) a large passage spacing size may worsen the temperature uniformity on the battery walls. Optimization is also performed to optimize the passage spacing size. Results show that the maximum temperature difference of the cooling air in passages is reduced from 23.9 to 2.1 K by 91.2%, and the maximum temperature difference among the battery cells is reduced from 25.7 to 6.4 K by 75.1%.

关键词: thermal management     electric vehicle     lithium-ion battery     temperature uniformity     design optimization    

Lithium-based draw solute for forward osmosis to treat wastewater discharged from lithium-ion battery

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 755-763 doi: 10.1007/s11705-022-2137-3

摘要: As draw solute is the core element of forward osmosis (FO) technology, here Li-Bet-Tf2N synthesized from a customized ionic liquid betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) and Li2CO3 recovered from lithium-ion battery (LIB) wastes is proposed as a novel draw solute to treat Li+-containing wastewater from LIB manufacturing through FO filtration. Having high dissociation ability and an extended structure, Li-Bet-Tf2N generates a sufficiently high osmotic pressure to drive the FO filtration efficiently along with insignificant reverse solute diffusion. Li-Bet-Tf2N produces a water flux of 21.3 L·(m2·h)−1 at 1.0 mol∙L–1 against deionized water, surpassing conventional NaCl and MgCl2 draw solutes with a higher water recovery efficiency and a smaller solute loss. Li-Bet-Tf2N induces a more stable and higher water permeation flux with a 10.0% water flux decline than NaCl and MgCl2 for which the water fluxes decline 16.7% and 16.4%, respectively, during the treatment of 2000 mg∙L–1 Li+-containing wastewater for 12 h. More remarkably, unlike other draw solutes which require intensive energy input and complicated processes in recycling, Li-Bet-Tf2N is easily separated from water via solvent extraction. Reproducible results are achieved with the recycled Li-Bet-Tf2N. Li-Bet-Tf2N thus demonstrates a novel class of draw solute with great potentials to treat wastewater economically.

关键词: forward osmosis     lithium-ion battery     draw solution     lithium-containing wastewater     water treatment    

标题 作者 时间 类型 操作

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium redox flowbattery

期刊论文

Pressure drop analysis on the positive half-cell of a cerium redox flow battery using computational fluid

Fernando F. Rivera, Berenice Miranda-Alcántara, Germán Orozco, Carlos Ponce de León, Luis F. Arenas

期刊论文

Redox flow batteries—Concepts and chemistries for cost-effective energy storage

Matthäa Verena HOLLAND-CUNZ, Faye CORDING, Jochen FRIEDL, Ulrich STIMMING

期刊论文

End-of-life batteries management and material flow analysis in South Korea

Hyunhee Kim, Yong-Chul Jang, Yeonjung Hwang, Youngjae Ko, Hyunmyeong Yun

期刊论文

用于固定式大规模储能的液流电池

尹彦斌, 李先锋

期刊论文

Cumulant-based correlated probabilistic load flow considering photovoltaic generation and electric vehicle

Nitesh Ganesh BHAT, B. Rajanarayan PRUSTY, Debashisha JENA

期刊论文

A brief review on key technologies in the battery management system of electric vehicles

Kailong LIU, Kang LI, Qiao PENG, Cheng ZHANG

期刊论文

β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI

期刊论文

Mapping the trends and prospects of battery cathode materials based on patent landscape

期刊论文

Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle

P. PADMAGIRISAN, V. SANKARANARAYANAN

期刊论文

Performance of iron-air battery with iron nanoparticle-encapsulated C–N composite electrode

期刊论文

储能钠电池技术发展的挑战与思考

胡英瑛,吴相伟,温兆银,侯明,衣宝廉

期刊论文

电动自行车用锌空气动力电池

朱梅,徐献芝,杨基明

期刊论文

Modeling and optimization of an enhanced battery thermal management system in electric vehicles

Mao LI, Yuanzhi LIU, Xiaobang WANG, Jie ZHANG

期刊论文

Lithium-based draw solute for forward osmosis to treat wastewater discharged from lithium-ion battery

期刊论文